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/ Abstract

Heat shock proteins (HSPs) are a class of proteins that play important role in protein folding,
maintaining homeostasis, and suppressing the aggregation of mis-folded proteins. The synthesis of
these proteins in the cell is highly regulated, and is induced under various stress conditions that
include the pH, temperature, and starvation, UV and chemical exposure and the oxidative stresses;
however few Hsps also expresses constitutively. The major classes of HSPs include the HSP60, HSP70
and HSP90 and the small heat shock proteins that ranges from 12-40 kDa in size. The small heat shock
proteins like Hsps 18 are well known to facilitate the refolding of substrate proteins and maintaining its
biological activity, for which this protein has been explored as an efficient delivery system for the
vaccines development. This review will discuss various HSPs and their close relatives involved in
folding, assembly, regulation, and degradation of other proteins. The review will further highlight the
various approaches by virtue of which the Hsps can be employed in therapeutic interventions.
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Introduction

During stress conditions like high or low
temperature, pH, osmotic stun, starvation, UV and
chemical exposure, oxidative stress, almost all
organisms expresses heat shock proteins that help
these organisms to survive and perform their proper
functions under these conditions [1-2]. These
proteins function as molecular chaperons, due to their
assisting role in proper folding of the partially or
mis-folded proteins, it also suppress the aggregation
of mis-folded proteins [3]. During this process they
require ATP, and are assisted by their co-chaperons
for efficient functioning. Synthesis of Heat shock
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proteins should be transitory even in sustained stress
conditions, as their continuous synthesis would
unfavorably affect the protein homeostasis as well
as various cellular functions. A mechanism
regulating the synthesis of Heat shock proteins
involve binding of Hsp70 to transactivation domain
of HSF1, thus repressing transcription of heat shock
gene [4] Figure 1. Another mechanism leading to
inhibition of heat shock protein synthesis involves
binding of heat shock protein binding factor 1
(HSBP1) to HSF1 trimer and Hsp70, preventing HSF1
binding to DNA [5]. Heat shock response in
prokaryotes is regulated by sigma factor, which is
encoded by rpoH gene. This sigma factor binds to
RNA polymerase and helps in transcription of the
heat shock genes [6-7-8]. In E. coli various genes,
whose transcription involve 6-32 factor, have been
identified that include e.g. htpY, dnaK, rpoD, grpE,
groES, groEL, clpB etc. Regulation of heat shock
protein synthesis in prokaryotes is shut down by the
feedback inhibition mechanism that is induced by
DnaK chaperone machine. DnaK chaperone machine
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includes DnaK, DnaJ and Grp E proteins. These three
proteins help in down regulation by repressing the
translation of rpoH mRNA. Repression of mRNA
translation lead to degradation of 5-32 and
repression of its activity [9]. In eukaryotes, Heat Shock
Factors (HSF), carry out the process of transcription
[10]. Cells without stress have HSF bound to HSPs in
the cytoplasm , whereas under stress conditions,
HSF separates from the HSPs and form a trimer. HSF
trimer enters into the nucleus and its phosphorylation
occurs which are pre-requirements for binding of HSF
to heat Shock Elements that carry the transcription
process [11].

This review endeavors to offer an overview of heat
shock proteins and their role in as autoimmunity,
cancer and other vascular diseases. Various Hsps
and their close relatives that are known to be
involved in folding, assembly, regulation, and
degradation of other proteins are also discussed in
this article. It further highlights the mechanisms
underlying these functions that provide insights into
the approaches by which heat shock proteins can be
used as therapeutic interventions. Primary objective
of this review article is to glimpse the structure and
functioning of various classes of HSPs and to further
provide insights about their role in therapeutics.

Heat Shock Proteins as Molecular Chaperons

Molecular chaperones help in stabilizing unstable
proteins by binding to them and assisting the
processes like folding, assembly and regulation of
denatured conformations of proteins [12]. Principal
categories of chaperones that perform these functions
are the small heat shock proteins, proteins of Hsp90
family [13], Hsp 100 family [14], Hsp 70 and Hsp 60
family [15]. These chaperones are sometime assisted
by co-chaperonin that helps these chaperones in the
folding process. For example, Gro ES is a co-
chaperone that assist chaperone Gro EL in folding of
proteins. Similarly, Dna | is a co-chaperone that
assists dnak. During the folding process, chaperones
require energy which it attain by hydrolyzing ATP
into ADP. During ATP hydrolysis, conformational
changes take place in the heat shock proteins [16].
The table below depicts members and functions of
Heat shock proteins.

Major Families of Heat Shock Proteins

Hsp90 Family

HSP90 is an ATP-dependent molecular chaperone,
which is known to stabilize the substrate proteins

during the formation of steroid receptor complexes
[31]. Hsp90 maintain the active or inactive
conformation of client proteins and inhibit the
aggregation process [32]. Structurally, Itis a dimeric
protein comprises of four domains that include the
N-domain, charged linker, middle domain and C-
domain. Middle domain consists of ATPase site, and
is responsible for ATP hydrolysis and binding of
substrate proteins [33]. Interestingly, Hsp90’s, ATP-
binding region has a lid that generally exists in an
open conformation during ADP-bound structure, but
changes to a closed conformation when ATP bound
[34]. C-Terminal domain comprises of three stranded
B-sheet and a-helix coil [35]. The middle domain of
Hsp90 has three regions- two a-f-o domain (large
and small) and a helical coil [36]. Charged linker
region comprises of repeats of charged amino acids
which are highly conserved and are connected with
N terminal domain of Hsp90. ATP bound
conformation of Hsp90 was depicted along with
pINH] ppA (adenosine 5_-[B,y - imido] triphosphate;
*AMP-PNP’) and p23/Sbal co- chaperone [37]. Hop/
Stil (Hsp70-Hsp90 organizing protein) is a co-
chaperone which associates Hsp70 chaperone
system with Hsp90 chaperone machinery and also
inhibits ATPase activity of Hsp90 [38-39]. Notably,
inhibition of ATPase activity is associated with
another co-chaperone Cdc37/p50 [40].

Genes of Hsp90 family from various dissimilar
organisms like fruit flies, yeasts, chickens, Mammals,
trypanosomes, and bacteria has shown very much
identity in these sequences. All the proteins of Hsp90
family in eukaryotes and bacteria E. coli contains a
region of high negative-charge at the carboxyl end,
which is usually observed to be different, except four
amino acid residues, glu-glu-val-asp, thatis observed
to be similar among Hsp90 of eukaryotes. Earlier
studies have demonstrated that proteins of the Hsp90
family are present abundantly even under normal
temperatures conditions, and are induced by heat.
In Drosophila melanogaster, only one gene of this family
i.e. Hsp83 is known. In yeast S. cerevisiae, two genes
of this family are known - Hsc83 and Hsp83, while
Hsc83 is reported to be constitutively expressed and
induced moderately by heat, in contrary, the Hsp83
is constitutively expressed at a minor level and is
strongly induced by heat [41]. In Arabidopsis thaliana,
truncated cDNA of Hsp83 was isolated, sequenced
and cloned to full length by primer extension
methods. The study revealed that the level of
homologous transcripts of this cDONA increases upon
induction at high temperature [42]. The protein of
the endoplasmic reticulum also contains the
sequence glu-glu-val-asp at the same position in the
protein, but not at the C-terminal position. The ER
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protein GRP94 is glucose regulated protein as it is
induced by glucose starvation and the cytosolic one
is induced by glucose restoration [43].

Hsp70 Family

The 70 kDa family of proteins is the most abundant
family of heat shock proteins. Hsp70 play a role in
folding of the denatured proteins into their native
state and further holds the unfolded polypeptides
[15]. The structure of Hsp70 consists of an ATPase
domain, a - sandwich sub domain at the Carboxy
end which is its substrate binding domain and an
o-helical subdomain. The activity of Hsp70 takes
place when hydrophobic peptides of the proteins
interact with substrate binding domain of Hsp70 in
an ATP-dependent manner. Hsp40 is a co-chaperone
that helps Hsp70 in folding process, and is essential
to activate the ATPase activity of Hsp70 that results
in Hsp70-ADP complex. The release of ADP is aided
by a nucleotide-exchange factor for the opening of
nucleotide binding cleft. When ATP binds the ATPase
domain of Hsp70, a conformational change in the
substrate binding domain takes place and substrates
that are bound gets released which completes the
ATPase cycle [44]. All Hsp40 comprises of a domain
known as J-domain which necessarily help in
cellular activity via interacting with it. The J-domain
has a conserved sequence of tripeptides - Histidine-
Proline-Aspartic acid (HPD) [45]. Hsp40s are
classified into three classes on the basis of the
functional domains contained in them. Type I Hsp40s
are highly conserved and consist of a glycine-
phenylalanine (G/F) and cysteine rich region that
consists of four motifs of CXXCXGXG which is a
glycine/ methionine rich region. A carboxy terminal
peptide binding domain and a dimerization domain.
Type Il Hsp40s consist of the ] domain and the G/F
rich region, along with the peptide-binding region at
the C-terminus. Type III Hsp40s possess only the
conserved J-domain that can exist anywhere on its
sequence [46]. Apart from folding, members of 70 kDa
heat shock proteins appear to play necessary roles
in Clathrin-dissociation activity from vesicles coated
with bovine and depict high ATPase activity too [47].
Hsp70kDa family is also required for the synthesis
of protein, its translocation as well as storage [48].
Various cell organelles like cytoplasm, nucleus,
mitochondria and endoplasmic reticulum found to
have hsp70 and other members of its family [49].
Various proteins associated with Hsp70 family are
inducible only under stressful conditions, whereas,
few are constitutive in nature and expresses under
normal conditions too [49-50].

Hsp60 Family

Hsp60 (GroEL) is a chaperonin that belongs to
molecular chaperone family and assist protein
folding of denatured proteins [18-51]. The structure
of GroEL is in the form of a cage consisting of two
seven-membered rings of 57kDa each within the
central cavity [25]. The detail investigation of the
structure GroEL structure has revealed the presence
of three domains - Equatorial domain, Apical domain
and a middle Hinge domain. The equatorial domain
is an ATP-binding region and the apical domain is a
substrate-binding region consisting of hydrophobic
residues. The third domain middle hinge is a
connecting domain between the other two domains
[62-53]. Co-chaperonin named as GroES (Hsp10)
assists GroEL in the protein folding process which
binds upon the open-cavity of GroEL as a lid
(Figure3). Binding of GroES causes rotation of the
subunits of Hsp60 in a way that protein is released
from the hydrophobic site into hydrophilic part which
facilitates its folding. Interestingly, energy in the form
of ATP is required for the same. Denatured protein
binds to the hydrophobic region of apical domain on
the inner side of GroEL. Consequently, ATP binding
leads to a conformational change which facilitates
release of substrate protein and binding of GroES.
Furthermore, hydrolysis of ATP causes release of
GroES lid and liberates the substrate protein.
Complete folding of the client protein is achieved
after manifold of cycles [53-54].

Contrary to GroEL-GroES chaperone system, TRiC
is member of Hsp60 Family present in the eukaryotic
cytosol which is constitutively expressed [51]. Large
sized proteins that could not undergo folding via
GroES-GroEL chaperone machinery undergo folding
via binding to TRiC. TRiC binds to emerging
polypeptides from the ribosomes which are brought
to TRiC through a chaperone GimC or through DnaK-
DnaJ chaperone machinery [26-54]. Hsp60 activity
is regulated by several post-translational
modifications that include acetylation [55],
glycosylation [56] and ubiquitination [57].

Small Heat Shock Protein Family

Small Heat Shock Protein Family comprises of
members of molecular size ranging from 12kDa to
40kDa. These are unique in having an ‘alpha-
crystallin domain” which remains conserved
throughout. Besides this, sHsps also consists of a C-
domain and N-domain, as revealed by X-ray
crystallography studies [58-59]. Small heat shock
proteins display chaperone activity. sHSP 18 act as
molecular chaperone same as that of alpha-crystallin.
Both sHSP 18 and alpha-crystallin are effective in
preventing inactivation of restriction enzyme from
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heat [45]. Hsp18 play a role in maintaining the
biological activity of the proteins as depicted in one
study, where authors have showed the role of
sHsp18.1 preventing the denaturation of enzymes
Ndel and Smal from thermal inactivation [60].
Another study also confirm that Hsp18 bound to a
heat denatured luciferase enzyme could re activate it
in the presence of wheat germ extracts or rabbit
reticulocyte and thus shows that this small heat
shock protein can help in refolding of substrate
proteins [61-62]. Due to its chaperone activity in
maintaining the protein stability, sHsp18 is also used
as an efficient delivery system for the vaccines [60].

HSP20/ a-crystallin, another small heat shock
proteins categorized as a molecular chaperone
Members of the sHsp 20 family have a common
structure that consists of o -crystallin core structure
that is found in the C-terminal position. Any
alteration in these chaperones are reported to be
associated with different diseases such as prion
disease, «cystic fibrosis, cataracts, or
neurodegenerative diseasesincluding Huntington’s
disease, Parkinson’s disease and Alzheimer’s
diseasedue to the aggregation of a protein because of
partial unfolding and exposure of hydrophobic
surfaces of proteins [63].

Hsp27(HspB1), a Class1 Heat shock protein is
known to repress senescence [64] and block
apoptosis in cancer by inhibiting the mitochondrial
release of apoptotic proteins. Hsp27 facilitates
apoptosis by binding to cytochrome c, inhibiting the
formation of apoptosome and thus preventing the
activation of Caspase-3 [30]. Another study related
to sHsp30 proposed that induction of this protein is
known to down regulate the stress stimulation of
H*-ATPase activity. It provides various tolerances to
several stresses like heat shock, osmotic stress,
glucose starvation, organic acid stress etc. These
stress tolerances are not affected by the loss of hsp30
in cells rather the time required for adaptation to these
stress conditions is extended [65].

Heat Shock Proteins As Therapeutic Targets

Heat Shock proteins are important in maintaining
the homeostasis in cells. One of their main functions
includes transport of peptides among the
components of the cell. Due to this approach, stress
proteins are targeted for the regulation of immune
system. Foreign antigenic peptides induce the
expression of heat shock proteins and generate
immune response in the body. These proteins also
help in presenting the foreign peptides to the immune
cells. HSPs can also be used in the anti-cancer

vaccines, as these help in presenting the foreign
peptides from the cytosol to the MHC-1 complex in
the endoplasmic reticulum. MHC-1 and antigen
complex after binding with the CD4 receptors of the
T-cytotoxic cells induces an immune response against
the antigenic peptide. MHC-1 complex becomes
active by the cytokines released by T-helper cells
which are associated with MHC-2 complex to
generate an immune response. This strategy helps in
designing an approach for the vaccination in which
antigenic peptides and chaperone complex can be
introduced into the tumor cells to generate an immune
response [66].

HSP Based Anticancer Vaccines

Heat shock proteins are important due to their
functional role in preventing the accumulation of
degraded or misfolded proteins. Hence, Hsps play a
major role in preventing body tissue degradation and
aging process [67]. Moreover, the level of expression
of these chaperone elevate in cancer [68-69]. HspC2
was found to have high expression level in breast
cancer cells [70], while HspB1 increased expression
is associated with prostate cancer, liver cancer,
pancreatic cancer as well as gastric cancer [71-72].
Overexpression of heat shock proteins has been
known to be problematic in various anticancer
therapies, and can cause resistance to these therapies
via refolding of proteins and preventing the apoptosis
[71-73]. Hence, down regulation of over-expressed
Hsps can be an effective way to overcome this problem.
Hsp90, one of the most abundant proteins among
Heat shock proteins have been targeted in a variety
of cancers, such as Breast cancer, Colon cancer, Solid
Neoplasm, Gastric Carcinoma. Targeting and
inhibiting Hsp90 resulted in degradation of
oncogenic proteins [74]. Various clinical trials are
recruiting related to Hsp90 inhibitors as mentioned
in table below. The first inhibitor of Hsp90 as 17-
AAG (17 Allylamino-17-Demethoxygeldanamycin)
[75]. Nonetheless, more research is essential to state
a clear and thorough mechanisms of Hsps in allograft
rejection. Immunogenic properties of the Hsps is well
known [76]. Mechanisms lying behind Hsps
mediated immunity involve the binding of these Hsps
to antigenic peptides and their presentation to
Antigen Presenting Cells (APCs) and cross priming
of Cytotoxic T-lymphocytes [77-78]. Thus,
immunotherapy can be used to deploy Hsp vaccines
to the patient. An example illustrating the use of Hsps
as vaccines involves Gp96 vaccine in the treatment
of melanoma and carcinoma is in clinical trials [79-
80]. Hsps belonging to large molecular weight
chaperone families including Hsp110 and Grp170

Journal of Practical Biochemistry and Biophysics / Volume 2 Number 1 / January - June 2017



Jasleen Saini et. al. / Heat Shock Proteins and Their Therapeutic Applications: An Overview 45

are important targets in the development of
anticancer vaccines as they are known to bind to the
antigens Trp2 and Gp100 in case melanoma. In
addition to this, studies revealed that both Hsp110
and Grp170 increased the immunogenic peptide
effects greatly [81-82]. Some Hsps are known to be
expressed on surface tumor cells but are absent on
the surface of normal cells. Thus, natural killer cells
recognize these tumor cells due to the responsiveness
of Hsps expressed on their surface [83-84]. Hsp based
vaccines have the potential to treat various kinds of
cancer as mentioned in the table depicting
interventions used in clinical trials.

Heat Shock Proteins in Neurodegenerative
Diseases

Neurodegenerative diseases occur due to
generation of neurotoxicity through misfolding and
aggregation of proteins. These include Huntington’s
Disease, Parkinson’s Disease, Sclerosis, Muscular
Atrophy, Ataxias etc. [85]. Among neurodegenerative
diseases, Alzheimer’s is a type of dementia which is
characterized by the formation of amyloid plaques
leading to brain cell death. In the diseased state, a
protein named Amyloid Precursor Protein (APP) is
cleaved by f and y secretase to generate A,, which
is a neurotoxic fragment. The aggregation and
oligomerization of this neurotoxic fragment leads to
the plaque formation; hence causing neuronal cell
death [86- 87]. Heat shock proteins have been
observed to be linked with the protein aggregates.
HspB proteins have been found in plaques and
amyloids [88] and HspA1l proteins have been
associated with ABpeptides [89].

Parkinson’s disease is another neurodegenerative
disease which is characterized by the presence of
mutations in a-synucleic gene. Various studies
suggest that several members of Hsps have been
found to be associated with the treatment of
Parkinson’s disease. An example includes small heat
shock protein Hsp27 which inhibits the toxic effects
caused due to mutations in a-synuclein [90].
Moreover, Hsp27 and a-B crystallins have been found
successful in the treatment of neurodegenerative
diseases by preventing the fibril formation through
their binding to AP peptides [91].These studies
suggest that Heat shock proteins have been
implicated in the treatment of neurodegenerative
diseases.

Other Studies Related to Hsp Vaccines

Several investigations have associated heat shock
proteins to autoimmune diseases. Evidences
suggested that Hsp60 is implicated in rheumatoid
arthritis [92] and Type 1 diabetes [93]. Hsp60 also
facilitates the secretion of various cytokines, thus can
be a potential target for inflammatory diseases [94].
A study has demonstrated the use of therapeutic
agents which are competitive inhibitors of Hsp70
against Gaucher disease, lysosomal storage diseases
and B-galactosidase deficiency disorders in order to
stabilize the damaged proteins [95]. Another
therapeutic agent, Salvianolate has shown to treat
ischemia in a rat model [96]. Small Heat shock
proteins like Hsp27, Hsp22 and HspB5 are
characterized by the presence of a-crystallin domain
that is correlated with inflammation, apoptosis and
tumorogenesis [97-98-99]. Heat shock proteins find
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Table 1: The table below depicts members and functions of Heat shock proteins.
S. no. Hsp Family Members Functions Reference
1. Hsp100 Class I proteins - Hsp104, bacterial ClpB Protein disaggregation in [14,17, 18]
and their distant relatives ClpA, ClpC); association with Hsp70 chaperone
Class II - ClpX and HslU. system;
Proteolytic degradation of proteins;
Remodeling of client proteins
2. Hsp90 HtpG in the bacterial cytosol; Grp94/ gp96 Protein folding; [19, 20, 21]
in the endoplasmic reticulum of Regulation of
eukaryotes; the stability and active state of
Hsp75/TRAP1 in the mitochondrial substrate proteins;
matrix and; Contribution in a ide range of
Hsp90 in eukaryotic cytosol (Hsp83 cellular processes like
in Drosophila Hsc82 and Hsp82 in yeast, signal transduction, intracellular
Hsp90a and Hsp90p in humans, Hsp86 transport, and protein
and Hsp84 in mice). degradation.
3. Hsp70 DnaK, HscA or Hsc66 and HscC or Hsc62 Folding and refolding of client [22, 23]
in Prokaryotes; proteins;
Hsc70 in Cytosol, Hsp70 and its paralogs ~ Proteolytic degradation of unfolded
HSPA1A, HSPA1B, and HSPA1L in proteins;
Eukaryotes ; Transmembrane transport of
Binding immunoglobulin protein (BiP or proteins
Grp78) in endoplasmic reticulum and;
mtHsp70 or Grp75 in mitochondria.
4. Hsp60 Group I proteins - GroEL in bacterial Binding to the substrate protein and [24, 25, 26, 27]
cytosol, Hsp60 in mitochondria and enabling its folding
Rubisco binding protein (RuBisCoBP) in
chloroplasts;
Group II- Thermosome/ TF55 in archaea
and TRiC/CCT in the eukaryotic cytosol.
5. Small Heat Class I sHsps - Hsp27 (HspBl1), aB- Prevents aggregation of denatured [28, 29, 30]
Shock Proteins crystallin (HspB5), Hsp20 (HspB6) proteins;
and Hsp22 (HspBS); Increase the stability of
Class II sHsps - HspB2, HspB3,HspB4 microfilaments, intermediate
(aA-crystallin), HspB7, HspB9 and filaments and microtubules;
HspB10. Blockage of apoptosis (e.g., Hsp27)
Table 2: Table below shows Interventions involving Heat Shock Proteins in Clinical Trials
S.No.  Heat Shock Intervention Disease Phase of Source
Protein trial
involved
1. Heat Shock  Biological: Heat Shock Glioblastoma Multiforme; Phase 1 https:/ / clinicaltrials.gov
Protein Protein Peptide Astrocytoma, Grade IIL; /ct2/show/NCT0272251
Peptide Complex-96 (HSPPC- Anaplastic Ependymoma; 2?term=heat+shock+prot
Complex-96 96); Clear Cell Ependymoma; eins&rank=1
(HSPPC-96)  Procedure: Tumor Rese Ependymoma
ction;
Radiation: Radiation
2. Hsp70 Biological: Heat Shock Breast Neoplasms Phase1/  https://clinicaltrials.gov
Protein 70-peptide Phase 2 /ct2/show/NCT0002713
complexes (HSP70) 1?term=heat+shock+prot
eins&rank=2
3. Heat Shock  Biological: HSPPC-96; Brain and Central Nervous Phase1/  https://clinicaltrials.gov
Protein Procedure: conventiona System Tumors Phase 2 /ct2/show/NCT0029342
gp96 1 surgery 3?term=heat+shock+prot
eins&rank=4
4. Heat Shock Biological: gp96 Glioma Phase 1 https:/ / clinicaltrials.gov
Protein /ct2/show/NCT0212282
gp96 2?term=heat+shock+prot
eins&rank=6
5. Hsp70 Biological: Heat Shock Leukemia,Myeloid, Chronic; Phase 1 https:/ / clinicaltrials.gov
Protein 70 HSP70 Leukemia,Myeloid,Philadelphi /ct2/show/NCT0002714
a-Positive 4?term=heat+shock+prot
eins&rank=7
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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Heat Shock
Protein
Peptide

Complex-96

Heat Shock
Protein

gp96

Heat Shock
Protein

gp96

Heat Shock
Protein
Peptide

Complex-96
Hsp90

Heat Shock
Protein
Peptide

Complex-96

Heat Shock
Protein
Peptide

Complex-96

Heat Shock
Protein
Peptide

Complex-96
Hsp70

Hsp70

Heat Shock
Protein
Peptide

Complex-96
Hsp 90

Hsp 90

Hsp 90

Drug: HSPPC-
96 or Oncophage

Biological: autologous g
P96 vaccination

Biological: autologous g
P96 vaccination;
Drug: Oxaliplatin+S-1

Drug; ipilimumab;
Drug: HSPPC-96

Drug: CDKI AT7519;
Drug: Hsp90 Inhibitor
AT13387

Drug: autologous huma
n tumor-
derived HSPPC-96

Biological: HSPPC-96;
Drug: bevacizumab

Biological: HSPPC-96

Biological: recombinant
70-kD heat-
shock protein

Biological: OVA BiP pe
ptide;
Biological: gp209-
2M antigen;
Biological: recombinant
70-kD heat-
shock protein;
Biological: tyrosinase pe
ptide
Biological: HSPPC-96

Drug: Erlotinib Hydroc
hloride;
Drug: Hsp90 Inhibitor
AT13387;
Other: Laboratory Biom
arker Analysis;
Other: Pharmacological
Study
Drug: Dabrafenib;
Drug: Hsp90 Inhibitor
AT13387;
Other: Laboratory Biom
arker Analysis;
Other: Pharmacological
Study;
Drug: Trametinib
Drug: Hsp90 Inhibitor
AT13387;

Malignant Melanoma

Liver Cancer;
Pancreatic Adenocarcinoma

Gastric Carcinoma

Melanoma

Adult Solid Neoplasm

Lymphoma, Follicular;
Lymphoma, Small Lymphocyti
C

Recurrent Glioblastoma;
Recurrent Adult Brain Tumor;
Gliosarcoma

Brain and Central Nervous Syst
em Tumors

Leukemia

Melanoma (Skin)

Renal Cell Carcinoma

Recurrent Non-
Small Cell Lung Carcinoma;
Stage IV Non-
Small Cell Lung Cancer

Recurrent Melanoma;
Solid Neoplasm;
Stage IIIA Skin Melanoma;
Stage IIIB Skin Melanoma;
Stage I1IC Skin Melanoma;

Stage IV Skin Melanoma

Estrogen Receptor Negative;
HER2/Neu Negative;

Phase 3

Phase1 /

Phase 2

Phase 1/
Phase 2

Phase 1/

Phase 2

Phase 1

Phase 2

Phase 2

Phase 2

Phase 1

Phase 1

Phase 2

Phase1 /
Phase 2

Phase 1

Phase 1

https:/ / clinicaltrials.gov
/ct2/show/NCT0003900
0?term=heat+shock+prot
eins&rank=8
https:/ / clinicaltrials.gov
/ct2/show/NCT0213307
9?term=heat+shock+prot
eins&rank=12
https:/ / clinicaltrials.gov
/ct2/show/NCT0231747
1?term=heat+shock+prot
eins&rank=13
https:/ / clinicaltrials.gov
/ct2/show/NCT0245228
1?term=heat+shock+prot
eins&rank=14
https:/ / clinicaltrials.gov
/ct2/show/NCT0250370
9?term=heat+shock+prot
eins&rank=19
https:/ / clinicaltrials.gov
/ct2/show/NCT0008180
9?term=heat+shock+prot
eins&rank=21
https:/ / clinicaltrials.gov
/ct2/show/NCT0181481
3?term=heat+shock+prot
eins&rank=22
https:/ / clinicaltrials.gov
/ ct2/show/NCT0090506
0?term=heat+shock+prot
eins&rank=27
https:/ / clinicaltrials.gov
/ct2/show/NCT0003030
3?term=heat+shock+prot
eins&rank=28
https:/ / clinicaltrials.gov
/ct2/show/NCT0000563
3?term=heat+shock+prot
eins&rank=29

https:/ / clinicaltrials.gov
/ct2/show/NCT0114753
6?term=heat+shock+prot
eins&rank=38
https:/ / clinicaltrials.gov
/ct2/show/NCT0253533
8?term=heat+shock+prot
eins&rank=55

https:/ / clinicaltrials.gov

/ct2/show/NCT0209722

5?term=heat+shock+prot
eins&rank=57

https:/ / clinicaltrials.gov
/ct2/show/NCT0247417
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